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Abstract

Personal care product use is a potential source of metals exposure among children, but studies 

have been limited. We measured urinary concentrations of 10 metals (aluminum, arsenic [As], 

barium [Ba], cadmium, cobalt [Co], lead [Pb], manganese [Mn], molybdenum [Mo], nickel, and 

zinc [Zn]) in third trimester pregnant women (n=212) and their children at 8-14 years of age 

(n=250). Demographic factors (child sex, age, socioeconomic status, and maternal education), 

body mass index (BMI) z-score, and child personal care product use in the 24 hours prior to urine 

collection were examined as predictors of urinary metal concentrations. Metals were detected in 

80-100% of urine samples, with significant differences in maternal versus childhood levels. 

However, metal concentrations were not strongly correlated within or between time points. In 

linear regression models including all demographic characteristics, BMI z-score, and specific 

gravity, age was associated with higher Co (6% [95% CI: 2, 10]), while BMI z-score was 

associated with lower Mo (−6% [95% CI: −11, −1). In addition, significantly higher metal 

concentrations were observed among users of colored cosmetics (Mo: 42% [95% CI: 1, 99]), 

deodorant (Ba: 28% [3, 58]), hair spray/hair gel (Mn: 22% [3, 45]), and other toiletries (As: 50% 
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[9, 108]), as well as with an increasing number of personal care products used (As: 7% [3, 11]) 

after adjustment for child sex, age, total number of products used, and specific gravity. However, 

significantly lower metal concentrations were noted for users of hair cream (As and Zn: −20% 

[−36, −2] and −21% [−35, −2], respectively), shampoo (Pb: −40% [−62, −7]), and other hair 

products (Pb: −44% [−65, −9]). We found that personal care product use may be a predictor of 

exposure to multiple metals among children. Further research is recommended to inform product-

specific exposure source identification and related child health risk assessment efforts.
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1. Introduction

Metals are present naturally in the environment and have a wide range of industrial, medical, 

and consumer applications (Centers for Disease Control and Prevention, 2009; World Health 

Organization, 1996). Consequently, humans regularly experience multi-source, 

multipathway exposures to metals voluntarily from naturally fortified foods and nutritional 

supplements and involuntarily from contaminated air, food, and water. Biomarkers of metals 

exposure have been measured among children and adults (Centers for Disease Control and 

Prevention, 2009), including pregnant women because of the trans-placental metals transfer 

from mother to fetus (Callan et al., 2014; Chen et al., 2014; Punshon et al., 2016). Some 

metals have fundamental roles in human physiology across all life stages, but virtually all 

can be toxic at certain levels depending on chemical form, route, frequency, and duration of 

exposure (Centers for Disease Control and Prevention, 2009; Hanna et al., 1997; World 

Health Organization, 1996). Several metals are known neurotoxicants, such as lead (Pb) and 

mercury, while others are identified as human carcinogens, including arsenic (As) and 

cadmium (Cd) (Andrade et al. 2017; Tchounwou et al. 2012; Villarreal and Castro, 2016). 

Various metals have also been shown to induce oxidative stress, which plays a role in many 

health outcomes, including cardiovascular, metabolic, and renal disease (Valko et al. 2016). 

A number of metals have also been shown to disrupt the endocrine system, with implications 

for thyroid function, reproduction, metabolism, and many other health endpoints (Iavicoli et 

al. 2009; Rana 2014).

Personal care products are consumer goods that are intended to cleanse or beautify, such as 

shampoo and lipstick, or prevent and treat health conditions, such as sunscreen and acne 

cream (Kessler, 2015). Metals are common additives in personal care product formulations 

because they impart certain desired properties to products. For example, manganese (Mn), 

molybdenum (Mo), zinc (Zn), and, occasionally in certain countries, Pb compounds provide 

pigment to cosmetics, whereas aluminum (Al) compounds are used as antiperspirants and 

topical astringents (Agency for Toxic Substances and Disease Registry, 2005b, 2007c; 2008, 

2012b; Food and Drug Administration, 2016; Personal Care Product Council, 2017; Titenko-

Holland et al., 1998). These and other metals, such as Cd and As, may also be impurities in 

personal care products due to their natural presence in raw materials (Environmental 

Defence, 2011). Use of most personal care products results in direct skin contact where, 
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occasionally, localized health effects can occur under the appropriate exposure conditions 

(Marinovich et al., 2014). For example, use of eye shadows with nickel (Ni) has been 

reported as a risk factor for allergic contact dermatitis in pre-sensitized individuals (Bocca 

and Forte, 2009; Sainio et al., 2000). However, exposure to metals through personal care 

product use may lead to systemic toxicity should skin penetration occur (Marinovich et al., 

2014).

Given the prevalent use of personal care products among children, they may be exposed to 

metals through the application of various items such as cosmetics (e.g., fingernail polish) 

and those that are intended for general hygiene (e.g., liquid soap), hair styling (e.g., 

conditioner), and skincare (e.g., face and body lotion)(Environmental Protection Agency, 

2008; Manová et al., 2013; Wu et al., 2010). Child characteristics, such as age, sex, and body 

mass index (BMI), and parental socioeconomic status (SES), such as income and education, 

may modify exposures due to their influence on product use patterns (Manová et al., 2013; 

Wu et al., 2010). To our knowledge, no published studies have considered childhood 

exposure to metals in relation to the use of personal care product despite the value of 

relevant research in exposure-source identification and child health risk assessment.

The objectives of this long-standing birth cohort study in Mexico City were to: (1) 

characterize urinary metal concentrations among pregnant women in their third trimester as 

an index of their children’s exposure in utero, and among their children between the age of 8 

to 14 years; and (2) evaluate potential associations between children’s recent personal care 

product use and urinary metal concentrations.

2. Materials and methods

2.1 Study participants

Participants were recruited as part of the Early Life Exposure in Mexico to Environmental 

Toxicants (ELEMENT) project, a longitudinal cohort study of pregnant women and their 

children. The present analysis includes women who were recruited in 1997-2004 from 

public maternity hospitals during their first trimester and followed throughout pregnancy. At 

their third trimester prenatal visit to the study clinic, mothers provided a second-morning 

void urine sample and completed a nurse-administered questionnaire. In 2010, a subset of 

children was contacted at 8-14 years of age to participate in follow-up studies. Each child 

provided a spot urine sample and anthropometry, and completed a nurse-administered 

questionnaire with assistance from their primary caregiver. The present study includes 

children who had archived maternal third trimester urine samples (n=212) and/or their 

follow-up child urine samples (n=250) available for metals analysis. The ethics and research 

committees of the Mexico National Institute of Public Health and the University of 

Michigan approved the research protocols and participants provided informed consent 

before enrollment.

2.2 Urinary metal concentrations

Urinary concentrations of the metals in this analysis generally reflect recent exposures 

(Agency for Toxic Substances and Disease Registry, 2004, 2005a, 2007a, 2007b, 2007c, 
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2008, 2012b; IARC, 2012; Novotny and Turnlund, 2007), and, therefore, are considered 

appropriate biomarkers of exposure among those who recently used personal care products. 

Maternal and childhood urine samples were collected in sterile cups, aliquoted within one 

hour after collection, frozen, and stored at −80°C until they were later analyzed for their 

metal content (i.e., the data presented here are based on archived urine samples). Urinary 

metals were measured using inductively coupled plasma mass spectrometry (ICPMS, Varian, 

Inc., Palo Alto, California) at McGill University (Montreal, Canada) as described previously 

(Basu et al., 2010; Srigboh et al., 2016). Accuracy and precision were measured using 

certified reference standards (Institut National de Santé Publique du Québec, or INSPQ), and 

each batch run in replicates and contained procedural blanks (Srigboh et al., 2016). The 

following 10 metals: Al, As, barium (Ba), Cd, cobalt (Co), Mn, Mo, Ni, Pb, and Zn were 

selected in this study based on their potential as additives and/or contaminants in personal 

care products (Breast Cancer Fund, 2016; Cosmetic Ingredient Review, 2014; Environmental 

Defence, 2011; Environmental Working Group, 2017; Personal Care Product Council, 

2017).

In addition, urinary specific gravity (SG) was measured using a handheld digital 

refractometer (Atago Co., Ltd., Tokyo, Japan) to account for variability in metal levels due 

to urinary dilution (Pearson et al., 2009).

2.3 Predictors of metal exposure

During pregnancy, mothers were asked to report their total years of education. At one of 

their follow-up visits (2007-2011), mothers provided information regarding their household 

possessions as a surrogate measure of SES, from which a continuous score was created as 

previously described (Fortenberry et al., 2014; Watkins et al., 2016). Duplicate measures of 

child weight and height during the follow-up were taken by study personnel using an 

established research protocol (Lohman et al., 1988), and BMI z-scores were calculated using 

the 2007 World Health Organization (WHO) reference growth standard (de Onis et al., 

2007).

Questionnaires administered to children at 8-14 years of age contained “yes/no” items 

regarding their use of the following personal care products/product categories in the past 24 

hours: aftershave, bar soap, cologne/perfume, colored cosmetics, conditioner, deodorant, 

fingernail polish, hair cream, hair spray/hair gel, laundry products, liquid soap, lotion, 

mouthwash, shampoo, shaving cream, other hair products, and other toiletries (Lewis et al., 

2013). If needed, mothers or other primary caregivers assisted their children in completing 

the questionnaire.

2.4 Statistical analysis

Urinary metal concentrations below the limit of quantitation (LOQ) were assigned a value of 

LOQ divided by the square root of 2 (Hornung and Reed, 1990). Distributions of maternal 

and childhood urinary metal concentrations were calculated and visualized via histograms. 

Maternal and childhood urinary metal concentrations were corrected for SG (normalized to 

the median urinary SG for the sample) for comparisons using Wilcoxon rank-sum tests and 

Spearman rank correlations of these levels at and between both time points. Distributions of 
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demographic characteristics and BMI z-score and frequency of personal care product use 

were calculated, and product use frequency stratified by sex was compared using Fisher’s 

exact test.

Separate linear regression models were performed to assess demographic characteristics, 

BMI z-score, and the use of personal care products in the past 24 hours, as predictors of In-

transformed concentrations of each metal (not corrected for SG) among children at 8-14 

years of age. Predictors were first explored individually in models that were adjusted only 

for SG as a covariate, and then in fully adjusted models with covariates selected based on 

biological and statistical considerations (Kleinbaum et al., 1998). In analyses evaluating 

demographic characteristics and BMI z-score as predictors of metal levels, all models 

included child sex, age, BMI z-score, household SES score, maternal education, and SG. 

Models evaluating personal care product use as predictors of metal levels were adjusted for 

child sex, age, SG, and total number of personal care products used in the past 24 hours. Sex 

was not included in the two models that relied on data from girls only: cosmetics and 

fingernail polish

As personal care product use may differ among boys and girls, potentially leading to sex-

based differences in the intensity, frequency, and/or duration of exposure to metals through 

the use of these items, we evaluated a sex*product use interaction term in models predicting 

metals exposure. However, there were no significant interactions between sex and product 

use (data not shown) and, consequently, this interaction term was not included in subsequent 

models. Effect estimates are expressed as percent change in urinary metal concentrations 

related to a specific demographic variable, BMI z-score, personal care product used, or a 

total number of personal care products used (equation: [exponentiated beta 
estimate-1]*100). A p-value <0.05 was defined as statistically significant for all tests. All 

statistical analyses were performed using SAS version 9.3 for Windows (SAS Institute, 

Cary, NC, USA).

3. Results

The children included in this study were 53% female, with a median age of 10.0 years, and a 

median BMI z-score of 1.0 (interquartile range [IQR]: −0.1, 1.8). The children’s mothers 

had a median educational attainment and SES score of 12 years (IQR: 9, 12) and 6 (IQR: 5, 

8), respectively.

Individual metals were detected in 80-100% of maternal and childhood urine samples (Table 

1). Apart from Ni, SG-corrected urinary childhood concentrations of Al, Ba, Cd, Co, and Pb 

were significantly lower, and As, Mn, Mo, and Zn significantly higher, than SG-corrected 

urinary maternal concentrations. Weak to moderate Spearman correlations were noted 

between SG-corrected urinary metal concentrations within maternal and child samples, 

ranging from −0.12 to 0.61, and −0.01 to 0.50, respectively (Tables S1, S2). Intercorrelations 

between SG-corrected maternal and childhood urinary metal concentrations were weak, 

ranging from −0.14 to 0.20 (Table 2).

Lewis et al. Page 5

Int J Hyg Environ Health. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In fully adjusted regression models, most demographic characteristics and BMI z-score were 

not significantly associated with childhood urinary metal concentrations, though effect 

estimates (Table 3) were comparable to those from crude models that were only adjusted for 

SG (Table S3). We noted a one-year increase in age was significantly associated with a 6% 

increase in urinary Co (95% CI: 2, 10), and a one-unit increase in BMI z-score was 

associated with a 6% decrease in Mo (95% CI: −11, −1).

Self-reported use of bar soap, laundry products, liquid soap, and shampoo within the past 24 

hours was highly prevalent among children (81-98%), unlike the use of all other personal 

care products (9-53%) (Table S4). Relative to sex, boys were more likely to use hair spray/

hair gel and lotion, whereas girls were more common users of cologne/perfume, conditioner, 

and hair cream. Data on aftershave and shaving cream were removed from the analysis due 

to an insufficient number of children (n <3) reporting the use of these two products.

Use of certain personal care products in the past 24 hours was associated with childhood 

urinary metal concentrations in regression models that were only adjusted for SG (Table S5) 

and those that were fully adjusted (Table 4). In fully adjusted models, use of deodorant, hair 

spray/hair gel, and other toiletries was associated with higher Ba (28% [3, 58]), Mn (22% [3, 

45]), and As (50% [9, 108]), respectively. Among girls, use of cosmetics was significantly 

associated with higher Mo (42% [1, 99]). In addition, the total number of personal care 

products used was associated with higher As (7% [3, 11]). However, significantly lower 

concentrations of As (−21% [−36, −2]) and Zn (−20 [−35, −2]) were associated with hair 

cream use, and lower Pb concentrations were associated with shampoo (−40% [−62, −7]) 

and other hair product use (−44% [−65, −9]).

4. Discussion

To our knowledge, this is the first study exploring the potential relationship between self-

reported personal care product use and urinary metal levels among children. We found that 

use of cosmetics, deodorant, hair spray or gel, and other toiletries as well as the total number 

of personal care products used in the 24 hours prior to sample collection were associated 

with higher urinary levels of certain metals. Together, our results suggest that personal care 

products may be a source of metal exposure among children living in Mexico City.

Published studies concerning exposure to metals among children and pregnant women in 

Mexico have mainly focused on those living in comparatively less population-dense areas of 

the country. For example, average urinary levels of Ba, Cd, Co, Mn, Ni, and Zn among 6-11 

year-olds reported by Moreno et al. (2011) were two to 24 times higher than those found in 

our cohort, whereas levels of As and Mo were similar. Urinary levels of As, Cd, and Mo 

among 12-15 year-olds (Garcia-Vargas et al., 2014) and 6-7 year-olds (Roy et al., 2011) 

were two to four times higher than those observed in this study. Maternal urinary levels of 

Mo across trimesters (Vázquez-Salas et al., 2014) were two times higher than our third 

trimester urinary measurements. Collectively, these data suggest that exposure to metals 

among individuals in our cohort residing in the highly urbanized setting of Mexico City are 

generally lower than those experienced by pregnant women and children living in regions of 

the country where the metals-related industry is prevalent. Nevertheless, average urinary 
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levels of these metals measured in the present study are largely higher than the US general 

population, participants of the U.S. National Health and Nutrition Examination Survey 

(Centers for Disease Control and Prevention, 2017).

Many of the observed associations between personal care product use and higher urinary 

metal levels among the children in our study are supported by information on the 

formulation and measured content of relevant products. For example, molybdenum trioxide 

is used as a pigment in cosmetics, and manganese violet and manganese PCA are used as a 

pigment and humectant, respectively, in hair styling products (Agency for Toxic Substances 

and Disease Registry, 2012b; Environmental Working Group, 2017; Personal Care Product 

Council, 2017; Titenko-Holland et al., 1998). This could explain the associations found in 

this study between colored cosmetics use and higher urinary Mo, and between hair spray/

hair gel use and higher urinary Mn. Similarly, barium sulfate is used as an opacifying agent 

mostly in “leave on” products (Cosmetic Ingredient Review, 2014; Personal Care Product 

Council, 2017), which could explain our observed association between deodorant use and 

higher urinary Ba. The positive association observed between both other toiletries and total 

number of personal care products and urinary As could be due to the use of various products 

with As present as an impurity (Environmental Defence, 2011; Salama, 2015). However, it is 

unclear why inverse relationships were observed between use of shampoo or other hair 

products and urinary Pb, and between the use of hair cream and urinary As and Zn. It is 

plausible that use of shampoo is an indicator for hygiene practices, such as recent showering 

and bathing, which remove metal contamination from the body, lowering children’s 

exposure. All children reporting the use of hair cream or other hair products were also users 

of shampoo, reflecting a similar hygiene pattern that potentially reduces exposures as well.

A distinctive feature of our study was the collection of maternal urine samples during 

pregnancy as a surrogate measure of exposure during in utero development of their child, as 

well as urine samples from these same children at 8-14 years of age. We found that 

correlations between maternal and childhood metal levels were weak, which may be due to 

differences in the sources of metal exposure over time, lifestyle choices and other behaviors 

that drive exposure-source interactions, or toxicokinetics (Ginsberg et al., 2004; Mattison et 

al., 1991). In addition, strong correlations were not observed between urinary metal levels 

within mothers or within children, potentially due to differences in exposure sources among 

various metals. Overall, our correlation results are consistent with those that have been 

reported in other studies concerning children and pregnant women (Garcia-Vargas et al., 

2014; Gardner et al., 2013; Gunier et al., 2014; Molina-Villalba et al., 2015; Moreno et al., 

2010).

Our study had limited statistical power due to somewhat modest sample size, and we did not 

correct for multiple comparisons. As a result, some observations may have been due to 

statistical chance, but the findings, especially those related to product use, can be reasonably 

explained. It should be noted that urinary levels of metals reflect total exposure, and 

consequently, it is not possible to differentiate between routes of exposure. We did not ask 

the children to report the brand and source of personal care products used or to quantify the 

amount and frequency of product use, and certain products were pooled together into broad 

groupings (e.g., colored cosmetics), all of which limited the breadth of our analyses and the 
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ability to identify more specific sources of metals exposure. Although our product use 

questionnaire has not been officially validated, many of the questions have been previously 

administered in other studies and the use of the previous 24 hours recall is expected to be 

quite accurate. In addition, urinary levels of nearly all metals measured in our study reflect 

recent exposure (Agency for Toxic Substances and Disease Registry, 2004, 2005a, 2007a, 

2007b, 2007c, 2008, 2012b; IARC, 2012; Novotny and Turnlund, 2007) and, consequnetly, 

they are considered appropriate biomarkers to examine their potential relationship to child 

consumer product use over the past 24 hours. The only exception to this is urinary Cd, which 

is somewhat responsive to recent exposure, but largely indicative of total body burden (i.e., 

short- and long-term exposure) (Agency for Toxic Substances and Disease Registry, 2012a). 

Caution is needed if attempting to generalize our results to populations in other countries 

because geographic variability in behaviors, non-modifiable factors, and/or content of 

sources may lead to different exposure profiles.

5. Conclusions

We found that recent use of personal care products among children is associated with 

exposure to multiple metals. Despite growing interest in this topic, the state-of-the-science is 

limited and, consequently, additional research is recommended, as it will improve risk 

assessment and exposure management efforts. Specifically, longitudinal studies that collect 

detailed information on personal care product specifics (e.g., brand, product line, and metal 

content) and use patterns (e.g., amount and frequency) and repeated urine samples would 

allow for more thorough analyses, including the investigation of temporal relationships, 

which was not possible in our study.
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Highlights

• Urinary concentrations of 10 metals were measured in a Mexican birth cohort

• Metals were detected with high frequency at third trimester and 8-14 years of 

age

• Metals were not strongly correlated at or between both time points

• Children’s personal care product use was associated with urinary metal levels
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Table 1.

Urinary concentrations of metals
a
 measured among ELEMENT mothers at third trimester and children at 8-14 

years of age (ng/mL)

LOQ Subject %
>LOQ n GM AM Median (IQR) Max p-value

Al 8.6 Mothers 88 188 25.3 37.6 24.6 (14.6, 43.9) 333 <0.0001

Children 81 242 17.7 25.8 17.6 (10.6, 26.8) 343

As 0.23 Mothers 100 205 13.8 18.7 12.6 (9.40, 18.0) 296 0.0 03

Children 100 242 15.5 19.5 14.5 (10.6, 20.4) 386

Ba 1.10 Mothers 95 205 4.0 5.75 4.16 (2.50, 6.70) 51.8 <0.0001

Children 91 242 3.09 5.02 2.92 (1.91, 4.65) 85.0

Cd 0.04 Mothers 99 205 0.18 0.34 0.17 (0.12, 0.26) 17.0 0.0002

Children 98 242 0.14 0.17 0.14 (0.11, 0.18) 1.16

Co 0.06 Mothers 100 205 1.24 1.63 1.23 (0.81, 1.76) 17.2 <0.0001

Children 100 242 0.80 0.91 0.78 (0.64, 0.92) 12.6

Mn 0.40 Mothers 93 205 0.82 1.15 0.73 (0.57, 1.11) 16.8 <0.0001

Children 96 242 1.26 1.56 1.26 (0.84, 1.79) 10.4

Mo 2.90 Mothers 80 205 17.3 29.5 24.0 (12.2, 36.2) 286 <0.0001

Children 100 242 50.9 59.0 52.0 (37.5, 67.1) 293

Ni 2.96 Mothers 99 205 9.53 20.5 8.44 (5.94, 12.4) 1,030 0.51

Children 99 242 9.27 11.4 8.73 (6.30, 12.2) 106

Pb 1.20 Mothers 82 205 2.9 4.33 3.06 (1.78, 5.51) 77.5 <0.0001

Children 82 242 2.3 3.33 2.10 (1.41,3.24) 113

Zn 53.9 Mothers 97 188 288 375 288 (187, 459) 2,704 <0.0001

Children 99 222 408 469 403 (306, 547) 2,313

AM, arithmetic mean; GM, geometric mean; IQR, interquartile range; LOQ, limit of quantitation.

a
Urinary concentrations were corrected for specific gravity.
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Table 2.

Spearman correlations
a
 between urinary metal concentrations

b
 measured among ELEMENT mothers at third 

trimester and children at 8-14 years of age

Children

Mothers Al As Ba Cd Co Mn Mo Ni Pb Se Zn

Al 0.13 0.06 0.07 0.05 −0.01 0.13 −0.01 −0.14 0.05 0.07 0.06

As 0.18* 0.14 −0.01 0.02 −0.06 0.01 0.09 −0.01 0.09 0.16* 0.09

Ba −0.07 0.07 0.04 0.06 −0.01 0.05 0.03 0.06 0.08 −0.04 0.06

Cd −0.03 0.02 0.02 0.01 0.01 −0.04 −0.03 −0.03 −0.03 0.01 0.09

Co 0.08 0.17* 0.01 0.06 −0.01 0.03 0.14* 0.01 0.01 0.11 0.09

Mn 0.15* 0.15* 0.06 0.12 −0.01 0.07 0.05 −0.05 0.04 0.05 0.07

Mo −0.01 0.06 0.02 −0.11 0.06 −0.05 0.01 0.12 −0.02 −0.06 −0.05

Ni 0.07 0.06 0.18* 0.11 0.01 0.12 0.06 0.03 0.01 0.07 0.09

Pb 0.04 0.15* −0.07 0.09 0.04 −0.06 0.05 −0.01 0.14 −0.03 0.09

Se 0.12 −0.03 0.08 0.02 −0.14 −0.03 −0.07 −0.01 −0.11 0.01 0.01

Zn 0.20* 0.09 0.08 0.03 −0.03 0.01 −0.04 0.01 −0.04 0.08 0.13

a
Correlations were based on data from 167 to 198 metal-metal pairs.

b
Urinary concentrations were corrected for specific gravity.

*
p<0.05.
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